1,276 research outputs found

    Gene transcription analysis during interaction between potato and Ralstonia solanacearum

    Get PDF
    Bacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is an important quarantine disease that spreads worldwide and infects hundreds of plant species. The BW defense response of potato is a complicated continuous process, which involves transcription of a battery of genes. The molecular mechanisms of potato-Rs interactions are poorly understood. In this study, we combined suppression subtractive hybridization and macroarray hybridization to identify genes that are differentially expressed during the incompatible interaction between Rs and potato. In total, 302 differentially expressed genes were identified and classified into 12 groups according to their putative biological functions. Of 302 genes, 81 were considered as Rs resistance-related genes based on the homology to genes of known function, and they have putative roles in pathogen recognition, signal transduction, transcription factor functioning, hypersensitive response, systemic acquired resistance, and cell rescue and protection. Additionally, 50 out of 302 genes had no match or low similarity in the NCBI databases, and they may represent novel genes. Of seven interesting genes analyzed via RNA gel blot and semi-quantitative RT-PCR, six were induced, one was suppressed, and all had different transcription patterns. The results demonstrate that the response of potato against Rs is rapid and involves the induction of numerous various genes. The genes identified in this study add to our knowledge of potato resistance to Rs

    Chinese food security and climate change: Agriculture futures

    Get PDF
    Climate change is now affecting agriculture and food production in every country of the world. Here the authors present the IMPACT model results on yield, production, and net trade of major crops in China, and on daily calorie availability as an overall indicator of food security under climate change scenarios and socio-economic pathways in 2050. The obtained results show a relatively optimistic outlook on yield, production and trade toward 2050. The outcomes of calorie availability suggest that China will be able to maintain a level of at least 3,000 kilocalories per day through 2010 to 2050. Overall, Chinese agriculture is relatively resilient to climate change. It is unlikely that Chinese food security by 2050 will be compromised in the context of climate change. The major challenge to food security, however, will rise from increasing demand coupled with regional disparities in adaptive capacity to climate change

    Canted ground state in artificial molecules at high magnetic fields

    Full text link
    We analyze the transitions that a magnetic field provokes in the ground state of an artificial homonuclear diatomic molecule. For that purpose, we have performed numerical diagonalizations for a double quantum dot around the regime of filling factor 2. We present phase diagrams in terms of tunneling and Zeeman couplings, and confinement strength. We identify a series of transitions from ferromagnetic to symmetric states through a set of canted states with antiferromagnetic couping between the two quantum dots

    A Bezier curve-based generic shape encoder

    Get PDF
    Existing Bezier curve based shape description techniques primarily focus upon determining a set of pertinent Control Points (CP) to represent a particular shape contour. While many different approaches have been proposed, none adequately consider domain specific information about the shape contour like its gradualness and sharpness, in the CP generation process which can potentially result in large distortions in the object’s shape representation. This paper introduces a novel Bezier Curve-based Generic Shape Encoder (BCGSE) that partitions an object contour into contiguous segments based upon its cornerity, before generating the CP for each segment using relevant shape curvature information. In addition, while CP encoding has generally been ignored, BCGSE embeds an efficient vertex-based encoding strategy exploiting the latent equidistance between consecutive CP. A nonlinear optimisation technique is also presented to enable the encoder is automatically adapt to bit-rate constraints. The performance of the BCGSE framework has been rigorously tested on a variety of diverse arbitrary shapes from both a distortion and requisite bit-rate perspective, with qualitative and quantitative results corroborating its superiority over existing shape descriptors

    Manifestation of three-body forces in three-body Bethe-Salpeter and light-front equations

    Full text link
    Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange-bosons in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.Comment: 24 pages, 8 figures, submitted in Few-Body System

    Probing top flavour-changing neutral scalar couplings at the CERN LHC

    Get PDF
    Top decays into a light Higgs boson and an up or charm quark can reach detectable levels in Standard Model extensions with two Higgs doublets or with new exotic quarks, and in the Minimal Supersymmetric Standard Model. Using both a standard and a neural network analysis we show that the CERN Large Hadron Collider will give 3 sigma evidence of decays with Br(t -> Hc) >= 6.5 10^-5 or set a limit Br(t -> Hc) <= 4.5 10^-5 with a 95% confidence level if these decays are not observed. We also consider limits obtained from single top production associated with a neutral Higgs boson.Comment: Uses elsart.cls. 16 pages, 9 PS figures. Some comments and references added. Final version to appear in PL

    Analysis of the intraspinal calcium dynamics and its implications on the plasticity of spiking neurons

    Full text link
    The influx of calcium ions into the dendritic spines through the N-metyl-D-aspartate (NMDA) channels is believed to be the primary trigger for various forms of synaptic plasticity. In this paper, the authors calculate analytically the mean values of the calcium transients elicited by a spiking neuron undergoing a simple model of ionic currents and back-propagating action potentials. The relative variability of these transients, due to the stochastic nature of synaptic transmission, is further considered using a simple Markov model of NMDA receptos. One finds that both the mean value and the variability depend on the timing between pre- and postsynaptic action-potentials. These results could have implications on the expected form of synaptic-plasticity curve and can form a basis for a unified theory of spike time-dependent, and rate based plasticity.Comment: 14 pages, 10 figures. A few changes in section IV and addition of a new figur

    wd=1w_d=-1 in interacting quintessence model

    Full text link
    A model consisting of quintessence scalar field interacting with cold dark matter is considered. Conditions required to reach wd=1w_d=-1 are discussed. It is shown that depending on the potential considered for the quintessence, reaching the phantom divide line puts some constraints on the interaction between dark energy and dark matter. This also may determine the ratio of dark matter to dark energy density at wd=1w_d=-1.Comment: 10 pages, references updated, some notes added, minor changes applied, accepted for publication in Eur. Phys. J.

    Curcumin Induces EGFR Degradation in Lung Adenocarcinoma and Modulates p38 Activation in Intestine: The Versatile Adjuvant for Gefitinib Therapy

    Get PDF
    Background: Non-small cell lung cancer (NSCLC) patients with L858R or exon 19 deletion mutations in epidermal growth factor receptor (EGFR) have good responses to the tyrosine kinase inhibitor (TKI), gefitinib. However, patients with wild-type EGFR and acquired mutation in EGFR T790M are resistant to gefitinib treatment. Here, we showed that curcumin can improve the efficiency of gefitinib in the resistant NSCLC cells both in vitro and in vivo models. Methods/Principal Findings: After screening 598 herbal and natural compounds, we found curcumin could inhibit cell proliferation in different gefitinib-resistant NSCLC cell lines; concentration-dependently down-regulate EGFR phosphorylation through promoting EGFR degradation in NSCLC cell lines with wild-type EGFR or T790M EGFR. In addition, the antitumor activity of gefitinib was potentiated via curcumin through blocking EGFR activation and inducing apoptosis in gefitinib-resistant NSCLC cell lines; also the combined treatment with curcumin and gefitinib exhibited significant inhibition in the CL1-5, A549 and H1975 xenografts tumor growth in SCID mice through reducing EGFR, c-MET, cyclin D1 expression, and inducing apoptosis activation through caspases-8, 9 and PARP. Interestingly, we observed that the combined treatment group represented better survival rate and less intestinal mucosal damage compare to gefitinib-alone therapy. We showed that curcumin attenuated the gefitinib-induced cell proliferation inhibition and apoptosis through altering p38 mitogen-activated protein kinase (MAPK) activation in intestinal epithelia cell. Conclusions/Significance: Curcumin potentiates antitumor activity of gefitinib in cell lines and xenograft mice model of NSCLC through inhibition of proliferation, EGFR phosphorylation, and induction EGFR ubiquitination and apoptosis. In addition, curcumin attenuates gefitinib-induced gastrointestinal adverse effects via altering p38 activation. These findings provide a novel treatment strategy that curcumin as an adjuvant to increase the spectrum of the usage of gefitinib and overcome the gefitinib inefficiency in NSCLC patients

    Supersymmetric effects in top quark decay into polarized W-boson

    Full text link
    We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak (SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal or transverse W-boson. The corrections are presented in terms of the longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio \Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1% in magnitude and they tend to have opposite signs. The corrections to the total width \Gamma(t-->W b) are also presented for comparison with the existing results in the literature. We find that our SUSY-EW corrections to the total width differ significantly from previous studies: the previous studies give a large correction of more than 10% in magnitude for a large part of the parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added
    corecore